Exercise 19

For the function f graphed in Exercise 18:
(a) Estimate the value of $f^{\prime}(50)$.
(b) Is $f^{\prime}(10)>f^{\prime}(30)$?
(c) Is $f^{\prime}(60)>\frac{f(80)-f(40)}{80-40}$? Explain.

Solution

The graph from Exercise 18 is shown below.

Part (a)

To estimate the value of $f^{\prime}(50)$, draw the tangent line to the graph at $x=50$ and label two points on it to calculate the slope.

$$
\begin{gathered}
f^{\prime}(50)=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \approx \frac{650-400}{60-50}=\frac{250}{10}=25
\end{gathered}
$$

Part (b)

Draw the tangent lines to the graph at $x=10$ and $x=30$.

The one at $x=10$ has a more negative slope. Therefore,

$$
f^{\prime}(10)<f^{\prime}(30)
$$

Part (c)

Draw the tangent line to the graph at $x=60$ and draw the secant line to the graph over $[40,80]$.

The tangent line at $x=60$ has a higher slope than the secant line over [40, 80]. Therefore,

$$
f^{\prime}(60)>\frac{f(80)-f(40)}{80-40}
$$

